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Application of statistical methods
to the determination of slope in lidar data

David N. Whiteman

Assumptions made in the analysis of both Raman lidar measurements of aerosol extinction and differ-
ential absorption lidar ~DIAL! measurements of an absorbing species are tested. Statistical analysis
techniques are used to enhance the estimation of aerosol extinction and aerosol extinction error that is
usually handled using a linear model. It is determined that the most probable extinction value can differ
from that of the linear assumption by up to 10% and that differences larger than 50% can occur in the
calculation of extinction error. Ignoring error in the number density alters the calculated extinction by
up to 3% and that of extinction error by up to 10%. The preceding results were obtained using the
least-squares technique. The least-squares technique assumes that the data being regressed are nor-
mally distributed. However, the quantity that is usually regressed in aerosol extinction and DIAL
calculations is not normally distributed. A technique is presented that allows the required numerical
derivative to be determined by regressing only normally distributed data. The results from this tech-
nique are compared with the usual procedure. The same concerns raised here regarding appropriate
choice of a model in the context of aerosol extinction calculations should apply to DIAL calculations of
absorbing species such as water vapor or ozone as well because the numerical derivative that is required
is identical.

OCIS codes: 280.1100, 280.3640, 280.1910.
1. Introduction

In the analysis of both Raman lidar measurements of
aerosol extinction1 and differential absorption lidar
~DIAL! measurements of an absorbing species such
as water vapor or ozone,2,3 it is necessary to calculate
he derivative of the logarithm of the ratio of two
uantities. In the case of aerosol extinction that is
onsidered here, these two quantities are the atmo-
pheric number density and the range-corrected
idar-received power. The evaluation of the deriva-
ive is handled by fitting linear and quadratic models
o Raman lidar data and using the well-known x2

confidence test to assess both the best model and the
measurement errors. It is shown that assumptions
about the behavior of the data can substantially
change the answers that are calculated. The most
probable assumption is determined using statistical
techniques.
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2. Extinction and Derivative Equations

To calculate aerosol extinction, the following equa-
tion1 is used:

saer~lL, z! 5

d
dz HlnF N~z!

z2P~z!GJ 2 smol~lL, z! 2 smol~lR, z!

1 1
lL

lR

.

(1)
saer~lL, z! is the aerosol extinction coefficient ~e.g., in
inverse kilometers! at the laser wavelength, where lL
and lR are the laser and Raman-shifted wavelengths,
respectively; smol~lL, z! and smol~lR, z! are the molec-
ular ~Rayleigh! extinction coefficients; N~z! is the at-
mospheric number density; z is the altitude of the
measurement; and P~z! is the lidar signal that is due
to Raman scattering. Equation ~1! is applicable for
heights such that z . zmin, where zmin is the altitude
above which the lidar system overlap function is
unity. For the data to be presented here, that min-
imum height is approximately 800 m. The height
range over which data are analyzed here is thus cho-
sen to be 1–3 km. For the purposes of this paper, the
simplifying assumption that aerosol extinction is in-
versely proportional to the wavelength has been made.

The procedure commonly used3 for computing a
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numerical derivative such as in Eq. ~1! is to assume
that ln@N~z!yz2P~z!# behaves in a linear fashion over
some small range of the data and then use a least-
squares regression to derive the best-fit straight line.
In other words, the assumption is made that, over the
range of points being regressed, ln@N~z!yz2P~z!# is
best approximated by a straight line a 1 bz. A re-
gression is performed and the value of b is reported as
he desired derivative, and the standard error in de-
ermining b is used as the error in the derivative term

in Eq. ~1!. ~This approach will be referred to as the
tandard technique.! To perform the weighted re-
ression, error must be assigned to both the atmo-
pheric number density N~z! ~which is derived from
adiosonde measurements! and the range-corrected
idar data z2P~z!. It is often assumed that the error

in the radiosonde number density can be ignored.
This assumption is tested below.

In the analysis to follow, two mathematically
equivalent forms of the derivative function in Eq. ~1!
are used:

d
dz HlnF N~z!

z2P~z!GJ 5 (2)

1
N~z!

d
dz

N~z! 2
1

z2P~z!

d
dz

@z2P~z!#. (3)

Various models are used to calculate the deriva-
tives in expressions ~2! and ~3!. The cumulative chi-
squared ~x2! distribution4–6 is used to determine
which equation and model combination is best suited
to the set of data points being regressed. The most
probable composite profile of aerosol extinction is de-
termined here using these techniques. The results
are compared with the standard technique of using a
linear model to regress expression ~2! and assigning
no error to the number density data.

It should be noted that it is possible for one to avoid
evaluating the numerical derivative mentioned here
by calculating an average quantity of aerosol extinc-
tion or absorbing species within a layer of the atmo-
sphere.3 This can be done by integrating the
derivative term over the extent of the layer. This is
essentially an assumption of constant behavior of the
quantity within the layer and linear behavior of the
quantity between the layers. If one, however, de-
sires to take advantage of the natural variation of the
data both within and between layers, it is necessary
to deal with the statistical issues outlined here.

3. Introduction to the Technique of Least-Squares
Fitting

Following the treatment of Barlow,4 consider a data
ample consisting of a set of ~x, y! pairs given by @~xi,
i!#. The xi are assumed to be known exactly

whereas the yi have been measured each with some
resolution si. Suppose that the yi are believed to be
estimated by some function f ~xi; a! where a is a vec-
or of parameters that we want to estimate.

The central limit theorem states that the distribu-
ion of the measured yi about their ideal values ap-
proaches a Gaussian. Thus the probability of a
particular yi for a given xi is

P~yi; a! 5
1

siÎ2p
exp$2@yi 2 f ~xi; a!#2y~2si

2!%.

To maximize the likelihood that the f ~xi; a! repre-
sent the yi, one has to minimize the quantity

x2 5 (
i51

N @yi 2 f ~xi; a!#2

si
2

5 (
i51

N S yi
measured 2 yi

ideal

measurement oo errori
D2

. (4)

The minimization dx2yda 5 0 yields a set of simul-
aneous equations that when solved leads to the prin-
iple of least squares.

4. Comparison of Aerosol Extinction Calculations

The data used here were acquired by the NASA God-
dard Space Flight Center Scanning Raman Lidar
~SRL! system during the Convection and Moisture

xperiment ~CAMEX-II! that was held at Wallops
light Facility during August and September 1995.
he SRL uses a XeF excimer laser that produces an
utput spectrum centered at 351 nm. ~The spectral
utput of the laser and the impact this has on mea-
urements of Raman scattering in the atmosphere
ave been discussed elsewhere!.7 The backscat-

tered light is collected by a 0.76-m-diameter Dahl–
Kirkham telescope that is aligned with a 1.1 m 3
.8 m steerable mirror. This configuration allows
ata to be acquired from horizon to horizon in a single
can plane. Only vertical data are analyzed here,
owever. Through use of dichroic beam splitters
nd interference filters, the signal is split into four
avelengths: 351, 371, 382, and 403 nm. These

ignals are due to Rayleigh–Mie scattering, Raman
cattering from oxygen, nitrogen, and water vapor,
espectively. Each of these signals is split in ap-
roximately a 95% to 5% ratio and detected by a pair
f photomultiplier tubes—one for the low-altitude re-
urn, the other for the high-altitude return—and fi-
ally recorded using 100-MHz photon counting.
The Rayleigh–Mie signal is attenuated by a factor of
023 to allow it to be photon counted.! The tropo-

spheric aerosols studied here are confined to altitudes
up to approximately 3 km. Because of this, only
low-channel Rayleigh–Mie ~351-nm! and Raman ni-
trogen ~382-nm! data are used here. Although the
SRL has daytime measurement capability, the data
analyzed here were all acquired at night.

Data sets from 30 August, 3 September, and 13
September 1995 were examined. The data from 30
August and 3 September are averages over 5 min and
the data from 13 September are averaged over 25
min. The data have a range resolution of 75 m.
The results from the analysis of the 30 August data
are presented here in detail. The analysis of the 3
and 13 September data yields similar conclusions.
20 May 1999 y Vol. 38, No. 15 y APPLIED OPTICS 3361
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A. Example of using x2 to Select between a Linear and a
uadratic Model

Figure 1 shows two methods of calculating aerosol
extinction using data acquired on 30 August 1995.
The left plot uses a weighted linear regression to
calculate the derivative in expression ~2! using the
standard technique mentioned above whereas the
right plot uses a quadratic regression. @The nota-
tion in the plot titles indicates that, for example, in
the left plot where ~2, 0%! is noted, expression ~2! is
egressed using a linear model while using 0% error
or the number density data. This convention is
sed for all plots.# Using a linear model, the slope of
he best-fit line gives the derivative whereas the error
n the determination of the derivative is given by the
eneral first-order error propagation formula shown
n Appendix A @Eq. ~A1!# as follows. Using g~z! 5

1 bz as the model for ln@N~z!yz2P~z!#, the desired
derivative g9~z! and its variance, letting f ~z! 5 g9~z!,
become

f ~z! 5 g9~z! 5 b, sf ~ z!
2 5 sb

2. (5)

So using a linear model, the error in determining the
slope is given simply by sb.

The weights used in the linear regression of
ln@N~z!yz2P~z!# are determined by using Eq. ~A1! to

ropagate errors and assuming that the error in the
idar data is given by Poisson statistics where si

2 is
given by P~z!, the number of photon counts detected
at height z. To calculate these weights, two specific
formulas that result from applying the error propa-
gation formula @Eq. ~A1!# and assuming no covariance
are needed. For f ~x! 5 6a~uyv!, the variance is
given by

sf ~ x!
2

f ~x!2 5
su

2

u2 1
sv

2

v2 ,

and for f ~x! 5 a ln~6bu!, the variance is given by

sf ~ x!
2 5 Sa

su

u D2

.

Fig. 1. Aerosol extinction calculated using both a linear and a
quadratic model for the logarithm of the ratio in expression ~2!.
The first plot shows the standard linear technique; the second plot
shows a second-order polynomial fit of these same data. No error
was assigned to the radiosonde number density data. The nota-
tion ~2, 0%! indicates that expression ~2! was regressed and that
0% error was assigned to the number density data.
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Combining these for the case in which g~z! 5 ln@N~z!y
z2P~z!# results in

sg~ z!
2 5

sP~ z!
2

P~z!2 1
sN~ z!

2

N~z!2 .

These are the weights that must be given in the
minimization of Eq. ~4!. In the standard technique
he error in the atmospheric density is ignored so that

sg~ z!
2 5

sP~ z!
2

P~z!2 .

On the right side of Fig. 1 is presented aerosol
extinction using a quadratic model for ln@N~z!y
z2P~z!#. In this case, using g~z! 5 a 1 bz 1 cz2 as the
model for ln@N~z!yz2P~z!#, the derivative and vari-
ance become

f ~z! 5 g9~z! 5 b 1 2cz,

sf ~ z!
2 5 sb

2 1 4z2sc
2 1 4zsbc

2, (6)

with the weights used in the regression being the
same as in the linear case. In both cases ~and in the
ases that are considered below!, a sliding window of
ve consecutive data points is used in the computa-
ion of aerosol extinction. The spacing of the result-
ng aerosol extinction values is 75 m; however, the
esolution of the derived extinction values is 375 m.
n the linear case on the left, the error bars plotted
re given by the standard error of the slope given by
he expression for sf ~z!

2 in Eqs. ~5!. In the quadratic
ase on the right, the standard error of the slope is
iven by the expression for sf ~z!

2 in Eqs. ~6!.
It has been claimed2 that these two methods of

performing the log derivative shown in Fig. 1 yield
identical results. As can be seen in Fig. 2, however,
this is only approximately true both in the case of

Fig. 2. Comparison of extinction values and extinction error of
the data in Fig. 1. On the left is the ratio of the @extinction error

sing the quadratic regression for the derivative of expression ~2!#
and on the right is @the extinction error using the linear regression
o determine the derivative of expression ~2!#. The extinction val-

ues differ by up to 610% at 3 km. However, the aerosol optical
depth between 1 and 3 km agrees to better than 1% between the
two techniques. On the right is shown the ratio of these extinc-
tion errors where the values can differ by up to 50% or more. On
average, the error in determining the slope using the quadratic
model is larger than the error in determining the slope using the
linear model, with the quadratic model yielding an error in aerosol
optical depth 14% higher than the linear model.
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extinction value and in the case of extinction error.
On the left side of Fig. 2, the ratio of the aerosol
extinction computed using the quadratic model to
that computed using the linear model is plotted.
The difference between the two methods generally
increases with height as the error in the lidar data
increases. The difference in the ratios ranges from
approximately 65% between 1 and 2 km, increasing
to 610% at 3 km. The right side of Fig. 2 shows that
the extinction errors as calculated by the two tech-
niques differ by up to a factor of 2 at some altitudes.
The integrated aerosol extinction, i.e., aerosol optical
depth, between 1 and 3 km calculated using the two
techniques agrees to better than 1% between the two
methods. However, the error in aerosol optical
depth is 14% larger using the quadratic technique.

To determine which of these two models is more
probable, one can use the well-known x2 test. On
average the minimum x2 value determined from a
weighted least-squares regression will approximately
equal the number of degrees of freedom in the regres-
sion. The number of degrees of freedom is given by
n 2 m where n is the number of data points in the
egression ~five in the analyses done here! and m is the
umber of parameters in the model ~two in the case of
linear model, three for a quadratic model!. Using

he cumulative x2 distribution, the minimum value of
x2 obtained from the regression can be used to calcu-
late the probability that the combination of the model
chosen and the errors attributed to the data ~which
determine the weights used in the regressions! accu-
rately represent the data. The x2 probability distri-
bution for n degrees of freedom is given by

Px~x2; v! 5
22ny2

G~ny2!
xn22 exp 2 Sx2

2D .

The cumulative x2 distribution then is given by

Px~x
2; v! 5 *

x2

`

Px~x2; v!dx2. (7)

A value of x2 such that Eq. ~7! is approximately
qual to 0.5 indicates that the combination of model
nd data are reasonable. This minimum x2 will
hen be close to the number of degrees of freedom. If
he minimum value of x2 determined in the weighted

regression greatly differs from the number of degrees
of freedom in the regression, this is an indication of
either an inappropriate choice of model or errors that
do not accurately describe the actual variation in the
data or both.

Figure 3 shows x2 and Px~x2; v! values resulting
from the regressions used to determine the aerosol
extinction for both models used in Figs. 1 and 2. In
the upper left panel of Fig. 3, the x2 values resulting
from the linear regression are shown. Using a five-
point regression to determine aerosol extinction
leaves 3 degrees of freedom remaining. Thus a good
model and data combination would yield minimum x2

values of approximately 3. The x2 values shown for
the linear regression range from below 2 to approxi-
mately 10 with an average of 5.0. In the upper right
panel of Fig. 3 is shown the x2 values resulting from
the quadratic regression. The number of degrees of
freedom in this case is 2 and x2 ranges from less than
1 to approximately 5 for most of the profile with an
average of 2.7. The Px~x2; v! values are shown in the
lower panels.

The bottom panels of Fig. 3 show the cumulative x2

probability for both cases. A composite profile could
be formed from these two profiles by choosing at each
height the results from the model that has a cumu-
lative x2 value closest to 0.5. However, before taking
this step we will consider other methods to calculate
aerosol extinction below. Prior to this, however, we
must consider the influence of radiosonde number
density errors on the calculation of aerosol extinction.
In Subsection 4.B we demonstrate a technique for
estimating the error in the number density data.
This error is needed to perform a regression of ex-
pression ~3!.

In the analysis of this subsection, the technique of
least-squares minimization is applied to the quantity
ln@N~z!yz2P~z!#. Although both N~z! and z2P~z! are
taken to be normally distributed @at high count levels
such as in P~z! the Poisson distribution, which char-
acterizes photon-counting data such as these, is es-
sentially indistinguishable from a Gaussian
distribution#, their ratio is not, nor is the log of their
ratio. Deriving a minimization technique for non-
normally distributed data is beyond the scope or in-
tent of this paper. What is desired, instead, is to
examine the standard techniques that are in use in

Fig. 3. x2 and cumulative probability plots for the regressions of
igs. 1 and 2. In general, a x2 minimum should approximately

equal the degrees of freedom in a regression. Using the linear
model on the left, the number of degrees of freedom is 3. Using
the quadratic model on the right, the number of degrees of freedom
is 2. A cumulative probability of approximately 0.5 indicates that
a reasonable x2 minimum value was achieved.
20 May 1999 y Vol. 38, No. 15 y APPLIED OPTICS 3363
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the analysis of aerosol extinction and DIAL data and
to demonstrate how statistical techniques can be
used to improve these techniques. It should be
noted that a regression of expression ~3! avoids the
difficulty of regressing non-Gaussian data because
both the radiosonde data and the number density
data are regressed separately maintaining their orig-
inal statistical distributions. This different ap-
proach is examined in Subsection 4.D.

B. Assigning an Error to the Radiosonde Number Density

In the analysis of Figs. 1 and 2, the error in the
radiosonde density measurements was ignored.
However, the error that is attributed to these data
affects both the weighting that occurs in a regression
and the resultant values for both extinction and ex-
tinction error. Thus to fully apply the statistical
techniques to be described below, an error must first
be assigned to the radiosonde number density.

An estimate of the number density error can be ob-
tained by using the x2 test in reverse, i.e., assume a
ertain model for the radiosonde number density and
hen choose the error that yields a value of x2 corre-

sponding to a 0.5 cumulative probability. This tech-
nique requires one to make a priori decisions about
which models to use to represent the data, however.
These decisions can be further tested using the Run
Test4 that considers the sequence of residuals in the
regression and determines how probable the sequence
is. The run test was not used here because assigning
an error to the radiosonde number density is not the
main purpose of this study. Instead, what is intended
here is to demonstrate ~1! that one can use statistical
techniques to estimate the error in data based on the
natural variation that they display about some as-
sumed model and ~2! that the radiosonde number den-
o
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sity error contributes to both the calculated extinction
value and the estimate of extinction error.

A value for the error in the radiosonde density data
is now determined using expression ~3!. To calculate
extinction with this equation, it is necessary to sepa-
rately regress the radiosonde number density data
N~z! and the range-corrected lidar data z2P~z!. The
ssumption is made here that over the restricted range
f 1–3 km the radiosonde percentage error is constant.
sing this assumption, the most probable radiosonde
umber density error can be determined with the cu-
ulative x2 distribution to assess probability.
Use of a linear model to determine dydz@N~z!# in

expression ~3! yields a most probable value of approx-
imately 1.75% error in density; i.e., this is the value
that yields a minimum x2 equal to the 50% cumula-
tive probability for 3 degrees of freedom ~a value of
pproximately 2.4!. Use of a quadratic model yields
.25% for the radiosonde density error using the
ame technique. It is assumed here that because
he atmospheric density data generally show an ex-
onential decay with height, some curvature in the
odel is needed to best describe the data. Because

f this, the quadratic model is chosen over the linear
odel to describe the radiosonde data. If the intent

f the analysis here were to investigate radiosonde
umber density errors in detail, one could use the
un Test mentioned above to further assess the

hoice of model. That is not the intent here and thus
he value of 1.25% is used for the error in the radio-
onde density data in the subsequent analysis.
Figure 4 shows the effect of including a value of

.25% for the error in radiosonde number density on
oth the calculated extinction and the extinction er-
Fig. 4. Effect of the error attributed to radiosonde number den-
sity on the calculation of extinction and extinction error is shown
here. On the left is the ratio of ~extinction calculated with a linear

odel and assigning 1.25% to the number density error! and ~the
xtinction calculated with a linear model and assigning 0% to the
umber density error!. The two calculations differ by 63% over

the range of the profile. In the comparison of the extinction errors
on the right, it can be seen that the effect of using errors in the
number density are mainly confined to the lowest part of the profile
where the two techniques differ by up to 10%. This is due to the
fact that the lidar data errors are generally much smaller than the
radiosonde error in the lowest part of the profile, but they are
larger above 2 km and thus become dominant. Aerosol optical
depth and error in aerosol optical depth agree to better than 1%
between the two techniques.
Fig. 5. Effect of using 1.25% number density error on x2 and
cumulative x2 probability are shown here. Comparing these plots
with those of Fig. 3 shows that including error for the number
density yields more probable results between 1 and 2 km. Above
2 km where lidar error dominates the number density error, there
is little difference between the two.
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ror. As shown in the left plot, using 1.25% error for
the radiosonde number density generally makes a
63% difference in the value of extinction over the
entire range of the extinction profile. The difference
in the calculated errors ranges from 610% at 1 km to
near zero at 3 km reflecting the fact that the error in
the lidar data is generally much smaller than the
radiosonde error at 1 km and increases with altitude
so that at 3 km the lidar error dominates the radio-
sonde number density error. Thus at 3 km the lidar
error is the main determinant of the total error in
extinction whether or not the errors are prescribed
for the radiosonde density. The aerosol optical
depth and the error in aerosol optical depth agree to
within 1% between the two techniques.

Figure 5 shows the corresponding x2 and cumula-
tive x2 plots for these regressions. Comparing Fig. 5
with Fig. 3 shows that including the 1.25% radio-
sonde error yields values for these quantities that are
much more probable in the lowest 0.5 km. This is
the region where including error for the number den-
sity significantly affects the calculated error.

C. Determining the Most Probable Composite Extinction
Profile

The x2 test that was used in Subsection 4.B to deter-
ine the most probable error in the radiosonde num-

er density can also be used to determine the most
robable composite profile of aerosol extinction. In
eeking the most probable composite profile for these

Fig. 6. Comparison of aerosol extinction and extinction error us-
ing a linear model on expression ~3! to the standard technique.
The extinction values differ by up to 5% in the upper portion of the
profile. Extinction errors differ by up to 40% in the lower part of
the profile. Aerosol optical depth calculated with the two tech-
niques agrees to within 1% whereas the linear regression of ex-
pression ~3! yields an error in aerosol optical depth that is 5% more
than the standard technique. This is choice ~3! for the composite
model. Plots of x2 and cumulative x2 probability are shown for
reference.
aerosol extinction data, four choices for determining
dydz$ln@N~z!yz2P~z!#% were considered: @1# perform-
ng a linear regression to determine the value of ex-
ression ~2!, @2# performing a quadratic regression to
etermine the value of expression ~2!, @3# performing
linear regression to determine the value of expres-

ion ~3!, and @4# performing a quadratic regression to
etermine the value of expression ~3!. For all these,
.25% was used for the error in the number density.
he equations pertaining to these techniques are
iven in Appendix A. Third-order models were also
tudied but gave much poorer results.
Choices ~1! and ~2! above are illustrated in Fig. 5.

igures 6 and 7 show the results using choices ~3! and

Fig. 7. Comparison of aerosol extinction and extinction error us-
ing a quadratic model on expression ~3! to the standard technique.

he extinction values differ by up to 10% in the upper portion of the
rofile whereas the errors differ by up to 50%. Aerosol optical
epth calculated with the two techniques agrees to within 1%
hereas the quadratic regression yields an error in aerosol optical
epth that is 2% less than the standard technique. The quadratic
odel used on expression ~3! is choice ~4! for the composite model.
lots of x2 and cumulative x2 probability are shown for reference.

Fig. 8. Composite profile uses the results of one of four different
models at each height. The model used is shown in the plot on the
left whereas the total resulting cumulative x2 probability is shown
n the right. Comparison with Figs. 5–7 shows the improvement
f the cumulative probability over any of the individual models.
20 May 1999 y Vol. 38, No. 15 y APPLIED OPTICS 3365
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~4!, respectively. In the upper plots are shown the
extinction ratio and extinction error ratio compared
with the standard technique @linear regression of ex-
pression ~2! using 0% number density error#. The x2

and Px ~x2; v! values are shown in the lower plots.
The most probable composite profile is now deter-

mined by comparing the results of the four methods of
calculating extinction mentioned above. At each
height, extinction and extinction error are calculated
using all four methods. The cumulative x2 probabil-
ity distribution is used at each height to determine
which is the most probable model to use. The model
that achieves a cumulative probability closest to 0.5
is chosen at that height. This procedure is repeated
for all heights in the profile. Figure 8 shows the
models that are used in the composite profile and the
resulting Px~x2; v!. Note the improvement in cumu-
lative x2 over any of the individual models.

Figure 9 shows the comparison of extinction and
extinction error calculated using the composite pro-
file and the standard technique. The values of ex-
tinction differ by up to 10% and the errors can differ
by more than 50%. The aerosol optical depth and
the error in aerosol optical depth agree to within 1%
between the two techniques.

Figure 10 again shows a comparison of the most
probable composite profile and the linear model, but
here an error of 1.25% in radiosonde number density
366 APPLIED OPTICS y Vol. 38, No. 15 y 20 May 1999
is used in both. The calculated extinction values are
now in better agreement, differing by up to 9% at 3
km, but the extinction errors still differ by 50% or
more. The aerosol optical depth and the error in
aerosol optical depth agree to within 1% between the
two techniques.

D. Determining the Composite Profile by Regressing Only
Normally Distributed Data

The preceding analysis was focused on comparing the
usual method of calculating aerosol extinction with
alternate methods that employ statistical analysis
tests. The usual method, referred to as the standard
technique, involves performing a linear regression of
ln@N~z!yz2P~z!# and assuming no error in the radio-
sonde number density values. The composite profile
analyzed in Figs. 8, 9, and 10 uses linear and quadratic
regressions of ln@N~z!yz2P~z!# as two of the candidates
for the final profile. However, as mentioned above,
ln@N~z!yz2P~z!# is not normally distributed. This vio-
lates one of the assumptions of the derivation of the
least-squares technique. To assess the influence that
this might have on the calculation of the most probable
composite profile, this profile is now determined with
only Gaussian-distributed data.

Expression ~3! can be used to derive aerosol extinc-
tion in a way that allows all regressions to be per-
formed on Gaussian-distributed data. The most
probable composite profile has again been generated

Fig. 11. Gaussian composite profile that uses choices ~3! and ~4!
from the set of four models. The choice of model as a function of
height and the cumulative x2 probability are shown.

Fig. 12. Comparison of the two-model Gaussian composite profile
to the standard technique. The techniques agree to within 5% in
the calculation of extinction, but the errors differ by up to 60%.
Aerosol optical depth calculated by the two techniques agrees to
within 1%. The error in aerosol optical depth is 3% less using the
two-model composite.
Fig. 9. Comparison of the four-model composite to the standard
technique. The comparison of extinction is on the left and the
comparison of extinction error is on the right. The extinction val-
ues differ by up to 10% at the top of the profile whereas the errors
differ by up to 40%. Aerosol optical depth and error in aerosol
optical depth agree to within 1% between the two techniques.
Fig. 10. Same as Fig. 9 except that 1.25% is used for number
density error instead of 0%. The extinction values differ by up to
9% and the extinction errors differ by up to 40%. Aerosol optical
depth and error in aerosol optical depth agree to within 1%.
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using the results of the cumulative x2 test used in
Subsection 4.C. This time, however, linear and qua-
dratic regressions of expression ~2! are not candidates.
The two remaining candidates that are considered at
each height are the linear and quadratic models used
to regress expression ~3!. The results are shown in
Fig. 11 where the model used and the resulting cumu-
lative probability are given as a function of height.

Figure 12 presents comparisons of the most prob-
able aerosol extinction calculated from the two mod-
els described above to the standard technique. In
the left plot, the ratio of the Gaussian composite to
the standard technique is plotted. They agree to
within approximately 65%. In the right plot, the
ratio of the extinction errors for these profiles is plot-
ted. Here the calculations disagree by up to 60%.
The aerosol optical depth agrees between the two
techniques to better than 1%; however, the error in
aerosol optical depth is approximately 3% lower us-
ing the Gaussian composite.

Figure 13 shows the comparison of the composite
profile versus the standard technique using 1.25%
error for the radiosonde number density error. The
extinction values now agree to within 64%. The
errors still differ by up to 60%. For completeness,
Fig. 14 shows the comparison of the most probable
profile using all four candidate models and the most
probable profile using just the normally distributed

Fig. 13. Same as Fig. 12 except that 1.25% is used for the number
density error instead of 0%. Differences between the two tech-
niques are less than approximately 3% over the range of the profile.
Errors differ by up to 40%. Aerosol optical depth calculated by the
two techniques agrees to within 1%. The error in aerosol optical
depth is 3% less using the two-model composite.

Fig. 14. Comparison of the four-model composite with the two-
model Gaussian composite. The techniques differ by up to 8% at
the upper end of the profile whereas the errors are in good agree-
ment except in the lowest 0.5 km where they differ by up to 50%.
data sets. The calculated extinction differs by up to
2–3% in the first kilometer and up to 5% between 2–3
km. The extinction errors generally agree well ex-
cept in the first 0.5 km where the difference is greater
than 50% at 1 km.

5. Summary and Conclusions

In the calculation of aerosol extinction from Raman
lidar data or of the concentration of an absorbing
species using DIAL data, one must evaluate a numer-
ical derivative. Various techniques for computing
this derivative have been compared using aerosol ex-
tinction calculated from three nights of data acquired
by the NASA Goddard Space Flight Center SRL dur-
ing the CAMEX-II experiment held at Wallops Flight
Facility in 1995. Statistical methods have also been
used to estimate the radiosonde number density er-
ror. The same techniques were then used to deter-
mine the most probable model for the least-squares
regression that gives the numerical derivative re-
quired to calculate extinction. The analysis shows
that differences in calculated extinction as large as
10% are made using the standard technique versus
the most probable composite profile determined by
these statistical methods. Calculated extinction er-
rors can differ by up to 640% between the two meth-
ods of calculation.

The method of least-squares fitting assumes that the
data are normally distributed. This assumption is
violated for data of the type dydz@N~z!yz2P~z!# as used
n this study and as commonly used in DIAL analyses.
t is possible, however, to reformulate the equations in
manner that allows the least-squares technique to be
sed on Gaussian-distributed data. It was shown
hat there is essentially no overall bias between the
xtinction results of this reformulated approach and
hose of the standard technique. However, the refor-
ulated approach yields errors that are smaller by

pproximately 3% whether errors are attributed to the
adiosonde number density.

Based on these results, if the desired accuracy in an
xtinction calculation at a given altitude is 1% or
etter, these statistical weighting issues must be
aken into consideration. If calculations to an accu-
acy of 10% are sufficient, they can be disregarded.
owever, if the actual size of the error in the calcu-

ated extinction is of importance, the analysis here
hows that use of statistical methods is required and
hat one should pay attention to whether the data
eing regressed have a Gaussian distribution. Re-
ormulation of the equations in a manner that allows
aussian data to be regressed is recommended.
Although no DIAL data were analyzed as a part of

his study, the conclusions drawn here should pertain
o DIAL calculations as well. The same statistical
ssues pertain to the calculation of the numerical de-
ivative that is needed to determine the amount of
he absorbing species. Also, DIAL measurements of
tratospheric ozone, for example, can be of higher
ignal-to-noise ratio than these Raman measure-
ents of aerosol extinction. Thus the significance of

he differences in numerical derivative calculations
20 May 1999 y Vol. 38, No. 15 y APPLIED OPTICS 3367
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reported here are potentially of even greater concern
in DIAL calculations.

Appendix A

1. Matrix Formulation of x2

The x2 function was given in the text as

x2 5 (
i51

N @yi 2 f ~zi; a!#2

si
2 .

If the si measurement errors are correlated, this be-
comes a matrix equation,

x2 5 ~ỹ 2 f̃!V21~y 2 f!,

where y 5 $yi%, f 5 $ f ~zi; a!%, f̃ is the transpose of f,
and the covariance matrix for the measurements y is
V. For example, in the case in which a 5 $a, b, c%, V
is given by

V 5 Svar~a! cov~ab! cov~ac!
cov~ba! var~b! cov~bc!
cov~ca! cov~cb! var~c!

D 5 Ssa
2 sab

2 sac
2

sba
2 sb

2 sbc
2

sca
2 scb

2 sc
2
D ,

where it is noted that cov~ab! 5 cov~ba!, etc.

2. How the Measurement Errors Propagate into the
Errors in the Derived Coefficients4

The treatment of Barlow4 will be followed here. By
differentiating x2 with respect to the ai and setting
these equal to zero, a set of simultaneous equations is
derived. These can be solved for the vector â, which
is the least-squares estimate of a. If f ~zi; a! is linear
in the ai, then the equations are linear and can be
solved exactly.

Consider f at a particular z0. For f a linear func-
ion, it can be represented as

f ~z0; a! 5 (
r

cr~z!ar.

f and x2 can now be represented in matrix form as

f 5 Ca,

x2 5 ~ỹ 2 ãC̃!V21~y 2 Ca!,

where C is an n 3 m matrix where n is the number
f points zi and m is number of coefficients cr. Min-
mization of x2 with respect to a yields the best esti-

mate of â and the errors in the estimate V~â!:

â 5 ~C̃V21C!21C̃V21y,

V~â! 5 @~C̃V~y!21C!21#,

where V~y! and V~â! denote the variance matrices for
the measurements and the results, respectively.
Specific formulas can be derived from these equations
as follows. In the case of a linear model y 5 mz 1 b

ith the si equal, the results are

m̂ 5
zy 2 zy

z2 2 z#2
,
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V~m̂! 5 sm
2 5

s

N~z2 2 z#2!
,

b̂ 5 y 2 m̂z#,

V~b̂! 5 sb
2 5

s2z2

N~z2 2 z#2!
5 V~m̂!z2.

3. General Formula for Error Propagation

Defining Vf as the error matrix for f where Vij 5
cov~xi, xj! and letting

Gki 5 S]fk

]xi
D ,

the general formula for error propagation becomes in
matrix form,

Vf 5 GVxG̃.

As an example, consider f 5 f ~a, b, c, z!, the general
first-order error propagation formula for a particular
known value of z can be determined with

G 5 S]f ~z!

]a
,
]f ~z!

]b
,
]f ~z!

]c D .

Then

Vf ~ z! 5 S]f ~z!

]a
,
]f ~z!

]b
,
]f ~z!

]c D Ssa
2 sab

2 sac
2

sba
2 sb

2 sbc
2

sca
2 scb

2 sc
2
D 1

]f ~z!

]a
]f ~z!

]b
]f ~z!

]c

2 ,

so that

Vf ~ z! 5 sf ~ z!
2

5 sa
2 F]f ~z!

]a G2

1 sb
2F]f ~z!

]b G2

1 sc
2F]f ~z!

]c G2

1 2sab
2F]f ~z!

]a GF]f ~z!

]b G 1 2sac
2F]f ~z!

]a GF]f ~z!

]c G
1 2sbc

2F]f ~z!

]b GF]f ~z!

]c G . (A1)

Unless the regression is linear and is performed
about the mean of the data points, the covariance
terms in general will not be zero and must be included.

4. Specific Formulas for the Equations used to Form the
Composite Profiles

By use of g~z! 5 a 1 bz as the model for ln@N~z!y
z2P~z!#, the desired derivative g9~z! and its variance
as given by Eq. ~A1!, letting f ~z! 5 g9~z! @this is choice
~1! from Subsection 4.C#, are

f ~z! 5 g9~z! 5 b, sf ~ z!
2 5 sb

2.



2

t

@

By use of g~z! 5 a 1 bz 1 cz as the model for
ln@N~z!yz2P~z!#, the derivative and variance become
@choice ~2!#:

f ~z! 5 g9~z! 5 b 1 2cz,

sf ~ z!
2 5 sb

2 1 4z2sc
2 1 4zsbc

2.

Similarly for expression ~3! the linear model is
achieved by modeling N~z! by g~z! 5 a 1 bz and
z2P~z! by h~z! 5 c 1 ez. Then the formulas for the
derivative and its variance become @choice ~3!#:

f ~z! 5
g9~z!

g~z!
2

h9~z!

h~z!
5

b
a 1 bz

2
e

c 1 ez

sf ~ z!
2 5

1
~a 1 bz!4 ~sa

2b2 1 sb
2a2 2 2sab

2ab!

1
1

~c 1 ez!4 ~sc
2e2 1 se

2c2 2 2sce
2ce!

.

Use of quadratic models for expression ~3! such
hat N~z! : g~z! 5 a 1 bz 1 cz2 and z2P~z! : h~z! 5 d 1

ez 1 fz2 yields for the derivative and its variance
choice ~4!#:

f ~z! 5
g9~z!

g~z!
2

h9~z!

h~z!
5

b 1 2cz
a 1 bz 1 cz2 2

e 1 2fz
d 1 ez 1 fz2

sf ~ z!
2 5

1
~a 1 bz 1 cz2!4 @sa

2~b 1 2cz!2 1 sb
2~a 2 cz2!2

1 sc
2~2a 1 bz!2z2 2 2sab

2~b 1 2cz!~a 2 cz2!

2 2sac
2~2a 1 bz!~b 1 2cz!z 1 2sbc

2~2a 1 bz!
3 ~a 2 cz2!z# 1
1

~d 1 ez 1 fz2!4 @sd
2~e 1 2fz!2

1 se
2~d 2 fz2!2 1 sf

2~2d 1 ez!2z2 2 2sde
2

3 ~e 1 2fz!~d 2 fz2! 2 2sdf
2~2d 1 ez!~e 1 2fz!z

1 2sef
2~2d 1 ez!~d 2 fz2!z#.
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